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Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a
molecular motor which utilizes the input chemical energy to move on a messenger RNA �mRNA� track that
also serves as a template for the polymerization of the corresponding protein. The forward movement, how-
ever, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which
captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for
the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell
time satisfies a “Michaelis-Menten-type” equation and is consistent with the general formula for the average
velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropri-
ately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously
move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a
single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase
diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable
parameters. We suggest new experimental tests of our theoretical predictions.
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I. INTRODUCTION

Ribosome is one of the largest and most complex intrac-
ellular cyclic molecular machines �1–4� and it plays a crucial
role in gene expression �5�. It synthesizes a protein molecule,
which is a heteropolymer of amino-acid subunits, using a
messenger RNA �mRNA� as the corresponding template; this
process is called translation �of the genetic message�. Mono-
meric subunits of RNA are nucleotides and triplets of nucle-
otides constitute a codon. The dictionary of translation re-
lates each type of possible codon with one species of amino
acid. Thus, the sequence of amino acids on a protein is dic-
tated by the sequence of codons on the corresponding tem-
plate mRNA. The polymerization of protein takes places in
three stages which are identified as initiation, elongation �of
the protein�, and termination. In this paper, we focus almost
exclusively on the elongation stage.

A ribosome is often treated as a molecular motor for
which the mRNA template also serves as a track. In each
step, it moves forward on its track by one codon by consum-
ing chemical fuel �e.g., two guanosine triphosphate �GTP�
molecules�. Simultaneously, in each step, it also elongates
the protein by adding an amino acid; the correct sequence of
the amino acids required for polymerizing a protein is dic-
tated by the codon sequence on the mRNA template. There-
fore, it may be more appropriate to regard a ribosome as a
mobile workshop that provides a platform for operation of
several tools in a well-coordinated manner. Our main aim is
to predict the effects of the mechanochemical cycle of indi-
vidual ribosomes, in the elongation stage, on their experi-
mentally measurable physical properties. We first focus on
the single-ribosome properties which characterize their sto-

chastic movement on the track in the absence of inter-
ribosome interactions. Then we consider the additional ef-
fects of the steric interactions of the ribosomes and those of
the rates of initiation and termination of translation on the
collective spatiotemporal organization of the ribosomes on a
track.

The stochastic forward movement of a ribosome is char-
acterized by an alternating sequence of pause and transloca-
tion. The sum of the durations of a pause and the following
translocation defines the time of a dwell at the corresponding
codon. Recently, using an ingenious method, the distribution
f�t� of the dwell times of a ribosome has been measured �6�.
We present a systematic derivation of this distribution from a
detailed kinetic theory of translation which incorporates the
mechanochemical cycle of individual ribosomes.

The exact analytical expression for f�t� which we derive
here is, in general, a superposition of several exponentials.
On the other hand, it has been claimed �6� that the difference
of two exponentials fits the experimentally measured f�t�
very well. We reconcile these two observations by iden-
tifying the parameter regime where our theoretically derived
f�t� is, indeed, well approximated by difference of two ex-
ponentials �7–11�. Moreover, we show that �t�−1, inverse of
the mean-dwell time, satisfies a Michaelis-Menten-like equa-
tion �12�. The reason for this feature of the mean-dwell time
is traced to the close formal similarity between the mecha-
nochemical cycle of a ribosome and the catalytic cycle in the
Michaelis-Menten theory of enzymes �12�.

The elongation of the growing protein by one amino acid
is coupled to the translocation of the ribosome by one codon.
Therefore, �t�−1 is also the average velocity �V� of a ribo-
some on the mRNA track. An analytical expression for the
average velocity of a molecular motor, whose mecha-
nochemical cycle is unbranched, was derived by Fisher and
Kolomeisky �13� in the context of motors involved in intra-
cellular transport of cargoes �14�. The mechanochemical*Corresponding author; debch@iitk.ac.in
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cycle of the ribosome in our model is, at least formally, a
special case of the cycle in the Fisher-Kolomeisky model. In
this special case, the Fisher-Kolomeisky formula for the av-
erage velocity of the molecular motor, indeed, reduces to the
expression for �t�−1 in our model of ribosome.

The average velocity of a ribosome can be reduced also
by applying an external force �called a load force� that op-
poses the natural movement of the ribosome on its track. The
force-velocity relation �V��F� �i.e., the variation of the aver-
age velocity �V� of a motor with increasing load force F� is
one of the most important characteristics of a molecular mo-
tor. Inspired by the recent progress in the single-ribosome
imaging and manipulation techniques �6,15–21�, we extend
the formula for �t�−1 appropriately to derive �V��F� for single
ribosomes. The smallest load force which is just adequate to
stall a molecular motor on its track is called the stall force
Fs. We also predict the dependence of Fs on the availability
of the amino-acid monomers and the concentration of GTP
molecules.

Our theoretical predictions for f�t�, �V��F�, and Fs show
explicitly how these quantities depend on various experimen-
tally controllable parameters. Deep understanding of these
dependences will also help in controlling various features of
f�t�, �V��F�, and Fs. In principle, the validity and accuracy of
our theoretical predictions can be tested by repeating in vitro
experiments of Ref. �6� for several different concentrations
of the amino-acid monomers and GTP molecules.

Often many ribosomes simultaneously move on the same
mRNA track, while each synthesizes separately a copy of
the same protein. We refer to such collective movement of
ribosomes on a mRNA strand as ribosome traffic because of
its superficial similarity with vehicular traffic �22�. In most
of the earlier theoretical studies of ribosome traffic, indi-
vidual ribosomes have been modeled as hard rods and their
steric interactions have been captured by mutual exclusion
�23–32�. Thus, all those models may be regarded as totally
asymmetric simple exclusion process �TASEP� for hard rods
�33,34�. In some recent works �35,36�, we have extended
these TASEP-type models of ribosome traffic by capturing
the essential steps of the mechanochemical cycle of indi-
vidual ribosomes. We have also reported the variation of the
average rate of protein synthesis with increasing population
density of the ribosomes on the track. In this work, we
present the phase diagrams of the model of ribosome traffic.

In the earlier TASEP-type models of ribosome traffic
�23–32�, the phase diagrams were plotted in a two-
dimensional plane spanned by � and �, which determine the
rates of initiation and termination. In this paper, we plot the
three-dimensional phase diagrams of our model of ribosome
traffic �36� in spaces spanned by three parameters which, for
different diagrams, are selected from �, �, the availability of
amino-acid monomers, and the rate of GTP hydrolysis. Com-
pared to the two-dimensional phase diagram of the TASEP-
type models of ribosome traffic, these three-dimensional
phase diagrams provide deeper insight into the interplay of
single-ribosome mechanochemistry and their collective spa-
tiotemporal organization.

Trafficlike collective movements of ribosomes on a
mRNA track during translation of a gene was demonstrated

many years ago by electron microscopy �37�. However, to
our knowledge, no attempt has been made so far to study the
phase diagram of ribosome traffic by systematic quantitative
measurements. But, in contrast to most of the earlier works,
we have used experimentally controllable parameters to plot
the phase diagrams. Therefore, we hope this paper will
stimulate experimental studies of the phase diagrams by sys-
tematically varying the supply of amino acids �monomeric
subunits of protein� and GTP molecules �fuel of ribosomes�
in the solution.

The paper is organized as follows. In Sec. II, we introduce
the model of the mechanochemical cycle of individual ribo-
somes. The exact dwell time distribution is calculated in Sec.
III, while the mean-dwell time and the physical interpreta-
tions of the Michaelis-Menten-like equation are presented in
Sec. IV. The connection between the mean-dwell time and
average velocity of a ribosome is pointed out in Sec. V,
where we also show the trends of variation of the force-
velocity relation with variation of some key parameters of
the model. The variance of the dwell time distribution and
the diffusion constant of a ribosome are quantitative mea-
sures of fluctuations; the analytical expressions of these
quantities are presented in Sec. VI, where their relationships
are pointed out. The distribution of the run times of the ri-
bosomes on their track and the relation of its first two mo-
ments with the corresponding moments of the dwell time
distribution are discussed in Sec. VII. The effects of steric
interactions among the ribosomes during their trafficlike col-
lective movement on a single mRNA track are studied in
Sec. VIII; the overall rates of protein synthesis are presented
in Sec. VIII A while in Sec. VIII B, we plot the three-
dimensional �3D� phase diagrams of the model and also de-
pict two-dimensional �2D� projections to compare to the cor-
responding 2D phase diagrams of the TASEP. Finally, the
results are summarized and main conclusions are drawn in
Sec. IX.

II. MODEL OF MECHANOCHEMICAL
CYCLE OF RIBOSOME

Figure 1 depicts the mechanochemical cycle of each ribo-
some in the stage of elongation of the protein where the
integer index j labels the codons on the mRNA track. The
amino-acid monomers are supplied to the ribosome in a form
in which they form a complex with an adapter molecule
called tRNA; the complex is called aminoacyl-tRNA
�aatRNA�. Each “charged” aatRNA, bound to another pro-
tein called EF-Tu, arrives at the ribosome from the surround-
ing medium. The arrival of the correct aatRNA-EF-Tu, as
dictated by the mRNA template, and its recognition by the
ribosome located at the site j triggers transition from the
chemical state 1 to 2 in the same location with a transition
rate �a. However, if the aatRNA does not belong to the cor-
rect species, it is rejected, thereby causing the reverse tran-
sition from state 2 to state 1 with transition rate �p. Hydroly-
sis of GTP drives the transition from state 2 to state 3 with
the corresponding rate �h1. Release of the phosphate group, a
product of the GTP hydrolysis, is responsible for the transi-
tion from state 3 to state 4; the corresponding rate constant is
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k2. The peptide bond formation between the newly arrived
amino-acid monomer and the growing protein, which leads
to the elongation of the protein by one amino-acid monomer
�and some associated biochemical processes, including the
arrival of the protein EF-G�, is captured by the next transi-
tion to the state 5 with transition rate �g. All the subsequent
processes, including the forward translocation of the ribo-
some by one codon, driven by the hydrolysis of another GTP
molecule, and the exit of a naked tRNA from the ribosome
complex are captured by a single effective transition from
state 5 at site j to the state 1 at the site j+1 with the transi-
tion rate �h2. The essential processes of the cycle are sum-
marized in the simplified Fig. 2. More detailed explanations
of the states and the transitions are given in Ref. �36�.

III. DWELL TIME DISTRIBUTION FOR A SINGLE
RIBOSOME: MOST GENERAL CASE

Because of recent improvements in experimental tech-
niques, it has become possible to image and manipulate
single ribosomes �6,15–21�. In the recent experiments on
single-ribosome manipulation �6�, the distribution of the
dwell times of a single ribosome at a codon was measured.
It was also shown that the experimental data fit best to
a difference of two exponentials. More recently, we �38�
have demonstrated that the numerical data obtained from
computer simulations of our model can also be fitted to
a difference of two exponentials. In this section, we de-
rive an exact analytical formula for the dwell time dis-
tribution in our model and compare it to the correspond-
ing numerical data obtained from computer simulations.
This analytical formula shows how the distribution of
the dwell times can be controlled by tuning the rates of the
various substeps of a mechanochemical cycle of the ribo-
some. This is a new prediction which, in principle, can be
tested by repeating the in vitro single-ribosome experiments
�6� for different concentrations of GTP and aatRNA mol-
ecules.

For every ribosome, the dwell time is measured by an
imaginary “stopwatch” which is reset to zero whenever
the ribosome reaches the chemical state 1, for the first time,
after arriving at a new codon �say, j+1th codon from the
jth codon�. For the convenience of mathematical formula-
tion and for later comparison to the corresponding results
of single molecule enzymatic kinetics, we make the fol-
lowing assumption: a ribosome finds itself in an excited state
1� following the transition from the state �j ,5� to �j+1,1��
and, then, relaxes to its normal state �j+1,1� with a rate
constant �. If the ribosome relaxes very rapidly from the
state 1� to the state 1, we can set �→� at the end of the
calculation.

Let P��j , t� be the probability of finding a ribosome at
site j in the chemical state � at time t. For our calculations in
this section, we do not need to write the site index j explic-
itly. The time evolutions of the probabilities P��t� are given
by

dP1�t�
dt

= − �aP1�t� + �pP2�t� , �1�

dP2�t�
dt

= �aP1�t� − ��p + �h1�P2�t� , �2�

dP3�t�
dt

= �h1P2�t� − k2P3�t� , �3�

dP4�t�
dt

= k2P3�t� − �gP4�t� , �4�

dP5�t�
dt

= �gP4�t� − �h2P5�t� , �5�

(b)

(a)

FIG. 1. �Color online� �a� A cartoon for pictorial depiction of the
mechanochemical cycle of an individual ribosome in our model.
Some of the symbols are explained in �b�.

FIG. 2. Mechanochemical cycle of an individual ribosome
shown in Fig. 1 is redrawn for the convenience of formulation of
the master equations.

STOCHASTIC KINETICS OF RIBOSOMES: SINGLE… PHYSICAL REVIEW E 80, 011908 �2009�

011908-3



dP1��t�

dt
= �h2P5�t� . �6�

The probability that addition of a new amino-acid subunit
to the growing protein is completed between times t and t
+�t is f�t��t. But,

f�t��t = �P1��t� = �h2P5�t��t , �7�

where �P1��t� is the probability that the ribosome is in the
state 1� in the time interval between t and t+�t. Therefore,

f�t� =
dP1��t�

dt
= �h2P5�t� . �8�

Solving the Eqs. �1�–�6�, subject to the normalization condi-
tion

P1�t� + P2�t� + P3�t� + P4�t� + P5�t� + P1��t� = 1 �9�

and the initial conditions

P1�0� = 1,P2�0� = P3�0� = P4�0� = P5�0� = P1��0� = 0,

�10�

we get the time-dependent probabilities P��t���
=1,2 , . . . ,5�; the details are given in the Appendix. Then,
using the relation �8�, we obtain the distribution f�t� of the
dwell times to be

f�t� = C1 exp�− �1t� + C2 exp�− �2t� + C3 exp�− k2t�

+ C4 exp�− �gt� + C5 exp�− �h2t� , �11�

where

C1 =
�a�h1k2�g�h2

��2 − �1��k2 − �1���g − �1���h2 − �1�
, �12�

C2 =
�a�h1k2�g�h2

��1 − �2��k2 − �2���g − �2���h2 − �2�
, �13�

C3 =
�a�h1k2�g�h2

��1 − k2���2 − k2���g − k2���h2 − k2�
, �14�

C4 =
�a�h1k2�g�h2

��1 − �g���2 − �g��k2 − �g���h2 − �g�
, �15�

C5 =
�a�h1k2�g�h2

��1 − �h2���2 − �h2��k2 − �h2���g − �h2�
, �16�

and

�1 =
�h1 + �p + �a

2
− ����h1 + �p + �a�2

4
− �a�h1	 ,

�17�

�2 =
�h1 + �p + �a

2
+ ����h1 + �p + �a�2

4
− �a�h1	 .

�18�

The explicit mathematical formula �11� for the dwell time
distribution, which we report in this paper, predicts how the
distribution depends quantitatively on the rates of the steps in
the mechanochemical cycle of a ribosome. These predictions
can be tested by repeating the experiments of Wen et al. �6�
with different concentrations of amino-acid subunits of the
proteins �i.e., aatRNA molecules�, fuel of ribosome motor
�i.e., GTP molecules�, and ribosomes.

We plot the distribution �11� in Fig. 3 and compare it to
the corresponding distribution which we have obtained by
direct computer simulation of our model. The agreement be-
tween the theoretical formula �11� and the simulation data is
excellent. Note that 
�=1

5 C�=0, which implies that f�t�=0 at
t=0. Moreover, the nonmonotonic variation of f�t� with t
arises from the fact that not all of the coefficients C� are
positive. As �a decreases �i.e., effectively, aatRNA becomes
more scarce�, the tail of the distribution becomes longer and
the peak shifts to longer dwell times. Moreover, similar trend
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FIG. 3. �Color online� Probability density f�t� of the dwell times
of a single ribosome in the most general case of our model for a few
different values of �a� the parameter �a �which is proportional to the
concentration of tRNA-bound amino-acid subunits� and �b� the pa-
rameter �h2 �which determines the rate of “stepping”�. The continu-
ous curve corresponds to the analytically derived expression �11�
whereas the discrete data points have been obtained from computer
simulation of the same model.
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is observed also in the variation of the most probable dwell
time with the decrease of �h2. The trend of variation of the
width of the distribution will be discussed later in Sec. VI of
this paper.

A. Special case I: �p=0

In the special case �p=0,

f�t� = C1� exp�− �at� + C2� exp�− �h1t� + C3� exp�− k2t�

+ C4� exp�− �gt� + C5� exp�− �h2t� , �19�

where C�� is obtained from C� by replacing �1 and �2 by �a
and �h1, respectively. The form of the expression �19� of f�t�
makes the underlying physics very transparent—f�t� is a su-
perposition of five different terms each of which decays ex-
ponentially with one of the five rate constants. Moreover, a
clear pattern in the factors in the denominators of the coef-
ficients C�� ��=1,2 , . . . ,5� has also emerged.

B. Special case II: �a=�h1=k2=�g=�h2 ,�p=0

Note that we have derived the general expression �11� for
f�t� assuming that no two rate constants are equal. One can
envisage several different possible situations where two or
more rate constants have identical numerical values �39�. In
order to demonstrate that the form of f�t� can get modified
under such special conditions, in this section we consider a
very special case where �p=0 and all the nonvanishing rate
constants are equal, i.e., �a=�h1=�h2=�g=k2=g. In this
case the master equations become much simpler and the ex-
pression for f�t� simplifies to the gamma distribution

f�t� =
gktk−1e−gt

��k�
, �20�

where ��k� is the gamma function with k=5.

IV. MEAN DWELL TIME: MICHAELIS-MENTEN
EQUATION?

Using the expression for f�t� in

�t� = �
0

�

tf�t�dt , �21�

we get the mean-dwell time

�t� =
C1

�1
2 +

C2

�2
2 +

C3

k2
2 +

C4

�g
2 +

C5

�h2
2 . �22�

Further simplification gives

�t� =
1

�a
�1 +

�p

�h1
 +

1

�h1
+

1

k2
+

1

�g
+

1

�h2
, �23�

which is, indeed, the sum of the average time periods spent
in different steps of the mechanochemical cycle.

Next we express the “pseudo”-first-order rate constant �a
as �a=�a

0�tRNA�, where �tRNA� is the concentration of the
tRNA molecules. Then, the Eq. �23� can be recast as

�t� =
1

Vmax
+ � KM

Vmax
 1

�tRNA�
, �24�

where

1

Vmax
=

1

�h1
+

1

k2
+

1

�g
+

1

�h2
=

1

�2
ef f �25�

and

KM =
�2

ef f + �−1
ef f

�a
0 , �26�

with

�−1
ef f = �p��2

ef f

�h1
 . �27�

One remarkable feature of the expression �24� is that it is
very similar to the Michaelis-Menten �MM� equation for the
speed of enzymatic reactions in bulk �12�. In chemical kinet-
ics, the MM equation is derived for the enzymatic cycle
shown in Fig. 4 where the enzyme E enhances the rate of the
reaction that converts the substrates S into the product P. In
that case, the maximum rate of the reaction is given by
Vmax=�2 while the Michaelis constant is ��+2+�−1� /�+1.

The steps of the mechanochemical cycle of an individual
ribosome, as redrawn in Fig. 5, are very similar to those of
the generalized MM-like enzymatic cycle shown in Fig. 4�b�.
The fact that the mean-dwell time for the ribosomes follows

FIG. 4. �a� Catalytic cycle of an enzyme in the Michaelis-
Menten theory. E denotes the enzyme while S and P denote the
substrate and product, respectively. The symbol I1 represents the
intermediate state of molecular complex of which the enzyme is a
component. �b� Generalization of the cycle shown in �a� to n num-
ber of intermediate states I1 , . . . , In.

FIG. 5. The mechanochemical cycle of a ribosome, shown in the
Fig. 2, is redrawn for the convenience of comparison to the MM
enzymatic reaction scheme shown in Fig. 4�b�. The symbols
I1 , I2 , I3 , I4 denote the five intermediate states which we labeled in
Fig. 2 by the integers 1, 2, 3, 4, respectively.
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a MM-like equation is consistent with the experimental ob-
servations in recent years �40–45� that the average rate of an
enzymatic reaction catalyzed by a single enzyme molecule
is, most often, given by the same MM equation.

For our model, we can interpret 1 / �t� as the average rate
at which a protein is synthesized by a ribosome, where
aatRNA plays the role of the substrate and the protein elon-
gated by one amino acid is the product. In the limit of effec-
tively infinite supply of tRNA molecules, on the average,
time required to complete one cycle would be the sum of the
times required to complete the remaining steps of the cycle
each of which has been assumed to be completely irrevers-
ible. This intuitive expectation for the maximum speed of
protein synthesis is consistent with the analytical form Eq.
�25� of Vmax. Furthermore, in the expression �26� for the
Michaelis constant, the effective rate constants �−1

ef f and �2
ef f

are the counterparts of �−1 and �2, respectively, of Fig. 4�a�.
Therefore, as far as the average speed is concerned, the ac-
tual mechanocycle, shown in Fig. 5, for a single ribosome
can be replaced by the simpler MM-like cycle shown in Fig.
6, where �a

0 is the counterpart of �+1, In the limit k2
→� , �g→� , �h2→�, the mechanochemical cycle of a ri-
bosome in our model reduces to the enzymatic cycle shown
in Fig. 4�a�. In this limit, �2

ef f →�h1 and, hence, the expres-
sions �25� and �26� reduce to the corresponding expressions
for Vmax and KM in the MM equation for enzymes.

In reality, however, a ribosome itself is a ribonucleopro-
tein complex that is not an enzyme, but provides a platform
where several distinct catalysts catalyze the respective spe-
cific reactions. For example, the GTPases enhance hydrolysis
of GTP molecules while the peptidyl transferase catalyzes
the formation of the peptide bond between the incoming
amino-acid monomer and the growing polypeptide.

A. Comparison to some earlier works

Our derivation of the MM-like equation is different from
the derivation of MM-like equation for cytoskeletal motors
reported in Ref. �46� where the dwell time distribution was
not derived. By making one-to-one correspondence between
the mechanochemical cycle in their generic model for cy-
toskeletal motors and that in our model of ribosome, we find
that the MM-like equation reported by Keller and Busta-
mante �46� reduces to the MM-like Eq. �24�.

In a recent work, Jackson et al. �47� modeled the process
of translation as an enzymatic reaction. However, there are
crucial differences between their formulation of translation
and our interpretation of the mechanochemical cycle in our
model. In their formulation, Jackson et al. �47� treated the
completely synthesized protein as the product of the enzy-

matic reaction, i.e., the run of a single ribosome from the
initiation site to the termination site was treated as a single
enzymatic reaction. In contrast, translocation of a ribosome
from one codon to the next and the associated elongation of
the growing polypeptide by one amino acid have been
treated in our calculation here as a single enzymatic reaction.

V. FORCE-VELOCITY RELATION

Utilizing an earlier result of Derrida �48�, Fisher and Ko-
lomeisky proposed a general formula for the average veloc-
ity �V� of a generic model of molecular motor where the
mechanochemical transitions form unbranched cycles. Each
cycle consists of m intermediate “chemical” states in be-
tween the successive positions on the track of the motor �Fig.
7�. The forward transitions take place at rates uj whereas the
backward transitions occur with the rates wj. Choosing the
unit of length to be the separation between the successive
equispaced positions of the motor on the track, the average
velocity �V� of the motor is given by �13�

V =
1

Rm
�1 − �

j=0

m−1 �wj

uj
	 , �28�

where

Rm = 

j=0

m−1

rj = 

j=0

m−1 � 1

uj
�1 + 


k=1

m−1

�
i=1

k �wj+i

uj+i
	 . �29�

Formally, our model of ribosome is a special case of the
Fisher-Kolomeisky model where u0=�a, u1=�h1, u2=k2, u3
=�g, u4=�h2, and w1=�p. Hence, in this special case, Eq.
�28� can be written in a compact form as

V =
�h2

1 + 	h2
, �30�

with

	h2 = �h2/kef f �31�

and

1

kef f
=

1

�a
�1 +

�p

�h1
 +

1

�h1
+

1

k2
+

1

�g
. �32�

Note that kef f
−1 is an effective time delay induced by the inter-

mediate biochemical steps in between two successive hop-
pings of the ribosome from one codon to the next �36�. In-
terestingly, simplification of the exact expression �23� yields

FIG. 6. The effective mechanochemical cycle of a ribosome,
where the effective rate constants �2

ef f and �−1
ef f are given by the

Eqs. �25� and �27�, respectively.

FIG. 7. The mechanochemical cycle of the molecular motor in
the Fisher-Kolomeisky model for m=4. The horizontal dashed line
shows the lattice which represents the track; j and j+1 represent
two successive binding sites of the motor. The circles labeled by
integers denote different “chemical” states in between j and j+1.
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the same formula �30� which we derived as a special case of
the Fisher-Kolomeisky formula for average velocity.

In our model, the load force will only affect the mecha-
nochemical transition from state 5 at j to state 1 at j+1. The
dependence of the rate constant �h2 on F is given by

�h2�F� = �h2�0�exp�−
F�

kBT
 , �33�

where �h2�0� is the magnitude of the rate constant �h2 in the
absence of load force and the typical length of each codon is
�=3
0.34 nm. Thus, when subjected to a load force F, the
force-velocity relation for a single ribosome becomes

V�F� =
�h2�F�

1 + 	h2�F�
. �34�

The force-velocity relation �V��F� has been plotted in
Figs. 8�a� and 8�b� for a few different values of �a and �g,
respectively, to demonstrate the dependence of �V��F� on the
supply of amino-acid monomers and the chemical fuel GTP.
For fixed �a and �g, �V� decreases with increasing F and
vanishes at F=Fs which is identified as the corresponding
stall force. Moreover, for a given F, �V� increases monotoni-
cally with increasing �a and �g although the rate of increase

gradually slows down. It is interesting to note that Fs is
independent of both �a and �g because, at stall, a ribosome
uses neither amino-acid monomers nor GTP. For the typical
values of the rate constants, which we have used in Fig. 8,
Fs�25–27 pN. This theoretical estimate is consistent with
the value 26.5 pN reported by Sinha et al. �49�.

VI. FLUCTUATIONS: MEAN SQUARE DWELL TIME
AND DIFFUSION CONSTANT

A. Fluctuations in dwell times

Mean-square dwell time is defined by

�t2� = �
0

�

t2f�t�dt . �35�

For our model,

�t2� = 2�C1

�1
3 +

C2

�2
3 +

C3

k2
3 +

C4

�g
3 +

C5

�h2
3 	 . �36�

Expression �36� can be expressed also as

�t2� = 2��t�2 − �2� , �37�

where

�2 = � �p

�a�h1
� 1

k2
+

1

�g
+

1

�h2
 +

1

�a�h1
+

1

�ak2

+
1

�a�g
+

1

�a�h2
+

1

�h1k2
+

1

�h1�g
+

1

�h1�h2

+
1

k2�g
+

1

k2�h2
+

1

�g�h2
. �38�

Note that only the first term involves �p. The remaining ten
terms are the inverse of the products of the five rate con-
stants.

Let us define “randomness parameter” r as

r =
�t2� − �t�2

�t�2 . �39�

Note that r is a quantitative measure of the fluctuations in the
dwell times of a ribosome. By substituting the expressions of
�t2� and �t� into Eq. �39�, we obtain

r =
�t�2 − 2�2

�t�2 . �40�

A nontrivial feature of the expression �40� is that it cannot be
obtained simply by substituting �−1

ef f and �2
ef f into the expres-

sion for r derived by Kou et al. �42� for the two-step
Michaelis-Menten enzymatic reaction. In other words, the
fluctuations of the dwell times in the five-step model for the
kinetics of ribosomes cannot be captured by the effective
two-state model drawn in Fig. 6.

The randomness parameter r is plotted in Fig. 9 as a func-
tion of the tRNA concentration for a few different values of
the parameters �h �in �a�� and �p �in �b��. We find �not
shown in any figure� that the numerator of r �i.e., �t2�− �t�2�
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FIG. 8. �Color online� Force-velocity relation for a ribosome in
our model for a few different values of the parameter �a� �a �which
is proportional to the concentration of tRNA-bound amino-acid sub-
units� and �b� �g �which can be controlled by varying GTP concen-
tration�. The continuous curve has been obtained from formula �34�
whereas the discrete symbols denote the numerical data points ob-
tained from computer simulations of the model.
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decreases monotonically with increasing concentration of
tRNA; it is the variation of the denominator of r with tRNA
concentration that is responsible for the nonmonotonic varia-
tion of r.

It is well known �42� that, for a one-step Poisson process,
r=1. At extremely low concentrations of aatRNA, the bind-
ing of a correct species of aatRNA to the A site on the large
subunit of a ribosome is the rate-limiting step in its mecha-
nochemical cycle. Therefore, r is unity at sufficiently low
values of aatRNA. r decreases with the increase of aatRNA
concentration. This decrease is caused by the formation of
intermediate complexes which also affect the rates of
progress of the mechanochemical cycle. However, with the
further increase of aatRNA concentration, the randomness
parameter r increases again. Finally, randomness parameter
saturates to a value which is determined by the number of
rate-limiting steps in the mechanochemical cycle. Such non-
monotonic variation of r with aatRNA concentration reduces
to a monotonic decrease when the magnitudes of the rate
constants are sufficiently high �see Fig. 10�.

B. Diffusion constant

The diffusion constant D is a measure of fluctuations
around the directed movement of the ribosome, on the aver-
age, in space. We now derive a closed-form expression for D
and relate it to the fluctuations in the dwell times. Fisher and
Kolomeisky’s general result for diffusion coefficient D is

D = � �VSN + dUN�
RN

2 −
�N + 2�V

2
	 d

N
, �41�

where

SN = 

j=0

N−1

sj

k=0

N−1

�k + 1�rk+j+1 �42�

and

UN = 

j=0

N−1

ujrjsj , �43�

while

sj =
1

uj
�1 + 


k=1

N−1

�
i=1

k
wj+1−i

uj−i
 , �44�

RN = 

j=0

N−1

rj , �45�

In our units d=1. Therefore, in our model, the expression for
D becomes

D = ��t�2 − 2�2�/2�t�3. �46�

Finally, we observe that r, which is a measure of the fluctua-
tions in the dwell times, is related to D and �V� by �50�,

r =
2D

�V�
. �47�

VII. DISTRIBUTION OF RUN TIMES

In this section, we report the distribution of the run times
� of an individual from the start codon to the stop codon. The
run time is related to the dwell times by the relation
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FIG. 9. �Color online� The randomness parameter r, defined by
Eq. �39�, is plotted against the concentration of aatRNA for a few
different values of �h �in �a�� and �p �in �b��.
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FIG. 10. �Color online� The randomness parameter r, defined by
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parameter values where all the magnitudes of all the rate constants,
other than �a, are quite high.
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� = 

j=1

L

tj . �48�

Central limit theorem states that, as L→�, the distribution
G��� of the run times � approaches a Gaussian, irrespective
of the nature of the distribution of the dwell times, since the
dwell times at different codons are independent of each
other. Obviously, for sufficiently large L �51�,

G��� =
1

��2��
2�

exp�−
�� − ����2

2��
2  , �49�

where

��� = L�t� �50�

and

��2� − ���2 = L��t2� − �t�2� . �51�

Using �t� from Eq. �23� and �t2� from Eq. �37�, we obtain the
Gaussian distribution G���. The Gaussian distribution G���
thus obtained is plotted in Fig. 11; it is in excellent agree-
ment with the corresponding numerical data obtained from
computer simulations.

VIII. EFFECTS OF STERIC INTERACTIONS
OF RIBOSOMES

The average velocity of a ribosome is also the mean rate
of polymerization of a protein. We define the flux of ribo-
somes to be the total number of ribosomes leaving the stop
codon �i.e., j=L� per unit time. Obviously, the overall rate of
protein synthesized from a single mRNA template is identi-
cal to the flux of the ribosomes on that mRNA track. The
number density of the ribosomes is given by �=N /L. The
size of a typical ribosome is such that, simultaneously, it
covers � codons, where ��1. We treat � as a parameter of
the model. For a given number N of ribosomes, the total
fraction of the lattice covered by all the ribosomes is given
by the coverage density �cov=N� /L.

In the preceding sections, we have ignored the possibility
of steric interactions among the ribosomes. Consequently,
the average velocity was independent of the ribosome popu-
lation on the given mRNA track. Such a scenario holds at
most at sufficiently low coverage densities. However, in the
presence of inter-ribosome interactions, the average velocity
becomes a function of the coverage density thereby giving
rise to nontrivial variation of the flux J �and, hence, the over-
all rate of protein synthesis� with �cov. Moreover, the density
profile of the ribosomes on the track also exhibits interesting
features. In this section, we study the spatiotemporal organi-
zation of the ribosomes in terms of the flux as well as the
density profiles on a single mRNA track and plot the phase
diagrams of the model.

Let P��j , t� be the probability of finding a ribosome at
site j, in the chemical state � at time t. Also, P�j , t�
=
�=1

5 P��j , t� is the probability of finding a ribosome at site
j, irrespective of its chemical state. Let P�j� �k� be the condi-
tional probability that, given a ribosome at site j, there is
another ribosome at site k. Then, Q�j� �k�=1− P�j� �k� is the
conditional probability that, given a ribosome in site j, site k
is empty. In the mean-field approximation, the master equa-
tions for the probabilities P��j , t� are given by �36�

�P1�j,t�
�t

= �h2P5�j − 1,t�Q�j − 1�j − 1 + ��

+ �pP2�j,t� − �aP1�j,t� , �52�

�P2�j,t�
�t

= �aP1�j,t� − ��p + �h1�P2�j,t� , �53�

�P3�j,t�
�t

= �h1P2�j,t� − k2P3�j,t� , �54�

�P4�j,t�
�t

= k2P3�j,t� − �gP4�j,t� , �55�

�P5�j,t�
�t

= �gP4�j,t� − �h2P5�j,t�Q�j��j + �� . �56�

Because of the normalization condition

P�j,t� = 

�=1

5

P��j,t� =
N

L
= � , �57�

not all of the five P��j , t� are independent.

A. Effects of steric interactions on rate of protein synthesis

The dwell time distribution f�t� certainly gets affected by
the steric interactions. As a first step, we have calculated the
effects of the interactions on the average velocity which is
just the inverse of the mean-dwell time.

Under periodic boundary conditions, in the steady state,
P��j , t� become independent of j and t. From the steady-state
limit of the Eqs. �52�–�56�, we derived the expressions
P���=1,2 , . . . ,5� and the flux �36�
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FIG. 11. �Color online� Distribution of the run times of a ribo-
some in our model. The continuous curve is the Gaussian distribu-
tion predicted by our theory while the discrete data points have
been obtained from computer simulations. Inset shows the dwell
time distribution for the same set of parameter values.
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JPBC = ��V� =
�h2��1 − �l�

�1 + � − �l� + 	h2�1 − �l�
, �58�

where

	h2 = �h2/kef f �59�

and kef f is given by Eq. �32�.
From Eq. �58�, the �-dependent average velocity �V� can

be obtained by dividing J by �. At sufficiently low densities,
this expression reduces to

J =
�h2�

�1 + 	h2�
�60�

and, hence, we recover the exact formula �30� for the average
velocity of a single ribosome.

B. Phase diagrams under open boundary conditions

Initiation and termination of protein synthesis are cap-
tured more realistically by imposing open boundary condi-
tions �OBC� than by the periodic boundary conditions
�PBC�. Whenever the first � sites on the mRNA are vacant,
this cluster of sites is allowed to be covered by a fresh ribo-
some with the probability � in the time interval �t �in all our
numerical calculations we take �t=0.001 s�. Since � is the
probability of initiation in time �t, the corresponding rate
constant �i.e., probability of initiation per unit time� �� is
related to � by �=1−e−���t. Similarly, whenever the right-
most � sites of the mRNA lattice are covered by a ribosome,
i.e., the ribosome is bound to the Lth codon, the ribosome
gets detached from the mRNA with probability � in the time
interval �t; the corresponding rate constant being denoted by
��. For all further discussions in this paper, we will assume
�h1=�h2=�h because both of these processes are driven by
GTP hydrolysis.

TASEP is known to exhibit three dynamical phases,
namely, high-density �HD� phase, low-density �LD� phase,
and the maximal current �MC� phase in the �-� plane. Our
main interest is to explore the nature of the dynamical phases
in different regions of the four-dimensional space spanned by
�, �, P�a

, and P�h
.

The parameters �a and �h can be controlled by varying
the concentrations of the aatRNA molecules and GTP mol-
ecules in the solution. The parameter � is determined by the
rate of assembling of the large and small subunits of a ribo-
some, their final coupling on the initiation site, and the as-
sistance of several other regulatory proteins in the initiation
of the actual polymerization of a protein. Strictly speaking, a
single parameter � captures essentially two different events
both of which take place at the termination site j=L. After
the full protein has been polymerized, the ribosome releases
the protein into the surrounding medium and then dissociates
from the mRNA track �the decoupling of the two subunits
also takes place; these are then recycled for another round of
protein synthesis� �52,53�. Therefore, the value �=1, which
we assumed in Ref. �36� is, in general, not very realistic.
Even in the special case �=1, in Ref. �36�, we reported
only a couple of two-dimensional cross sections of the full
phase diagram of this model. In this paper, we plot phase

diagrams in three-dimensional spaces spanned by �−�
− P�a

and �−�− P�h
.

For plotting the phase diagram, we use the same extre-
mum principle �54–57� which we used in Ref. �36�. In this
approach, we imagine that the left and right boundaries of
the system are connected to two reservoirs with particle den-
sities �− and �+, respectively. These two reservoirs are essen-
tially two infinite lattices with the number densities �− and
�+, respectively. We calculate the unknown densities �− and
�+, in terms of the rate constants of our model, by imposing
the requirement that these reservoirs give rise to the same
probabilities � and � of hopping with which a ribosome
enters and exits, respectively, the open system.

The extremum principle then relates the flux J in the
open system to the flux J��� for the corresponding closed
system �i.e., the system with periodic boundary conditions�.
Extremum current hypothesis �54–57� states that, for the
open system connected to the two reservoirs of number den-
sities �− and �+ at its entrance and exit, the flux J is related
to the corresponding flux JPBC in the closed system by

J = �max JPBC��� if �− � � � �+

min JPBC��� if �− � � � �+.
� �61�

Since the flux-density relation �also called the fundamental
diagram� of our model of ribosome traffic under periodic
boundary conditions exhibits a single maximum, the extre-
mum principle reduces to a simpler maximum current prin-
ciple �MCP�. According to this MCP, in the limit L→�,

J = max JPBC��� if �− � � � �+. �62�

1. Calculation of �� ,�− and �+

From Eq. �58�, the maximum flux under PBC corresponds
to the number density

�� =��1 + 	h2

�
� 1

���1 + 	h2� + 1
	 . �63�

Next we calculate �−. We use symbol 1 to represent the sites
covered by ribosome while the symbol 0 represents the sites
which are not covered by any ribosome. Let P−

jump be the
probability that, given an empty site, from left a ribosome
will hop onto it in the next time step. We have

P−
jump = P�1 . . . . . . . . . . . . . . 1

�

0� �P5�h2�t ,|

�64�

where P5 is the probability of finding ribosome in state 5
inside the reservoir and the conditional probability
P�1. . . . . . . . . . . . . .1

�

�0� � represents that, given an empty site,

P�1 . . . . . . . . . . . . . . 1

�

0� � =
�

�1 + � − ���
.|

�65�

Moreover, as argued in Ref. �36�,
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P5 =
1

1 + 	h2
. �66�

Now, �− is the solution of the equation �= P−
jump and, hence,

we get

�− =
��1 + 	h2�

��1 + 	h2��� − 1� + P�h2

, �67�

where P�h2
is the probability of hydrolysis in time �t.

Following similar arguments, we now calculate �+. The
probability P+

jump, given that a ribosome which covers � suc-
cessive sites, will hop onto the next adjacent empty site to its
right in the next time step,

P+
jump = P�1 . . . . . . . . . . . . . . 1

�

0�P5P�h2
,| �68�

where P�1. . . . . . . . . . . . . .1

�

�0� is the conditional probability of

finding a hole at site j, given that the site �j−�−1� is occu-
pied by the leftmost part of the ribosome. It is straightfor-
ward to show that

P�1 . . . . . . . . . . . . . . 1

�

0� =
1 − ��

1 + � − ��
.|

�69�

Now, �+ is the solution of the equation �= P+
jump and, hence,

we get

�+ =
��1 + 	h2� − P�h2

��1 + 	h2��� − 1� − �P�h2

. �70�

In the limit kef f →�, the expressions �70� and �67� for �+ and
�− reduce to the corresponding expressions �−=� and �+
=1−�, respectively, for TASEP.

2. Surface separating LD and MC phases

The MCP imposes the condition

�− = �� �71�

on the surface which separates the LD and MC phases. Sub-
stituting the expressions �67� for �− into Eq. �71�, we obtain

� =
P�h2

��

�1 + 	h2��1 − ���� − 1��
. �72�

3. Surface separating HD and MC phases

From the MCP

�� = �+ �73�

on the boundary between the HD and MC phases. Using
expression �70� for �+, we obtain

� =
P�h2

�1 − ����

�1 + 	h2��1 − ���� − 1��
. �74�

4. Surface of coexistence of HD and LD phases

Since the HD and LD phases coexist on the surface sepa-
rating these two phases, we obtain the boundary by solving
the equation

JPBC��−� = JPBC��+� �75�

because the same current passes through the two coexisting
phases in the steady state, where the density on the entry side
is �− and that on the exit side is �+.

Now incorporating the expressions of �− from Eq. �67�
and �+ from Eq. �70� into Eq. �58� and using Eq. �75�, we
find that the equation of the surface of coexistence of LD and
HD phases is given by

� =
P�h2

��1 + 	h2�

P�h2
� + ��1 − � + 2	h2 − �	h2 + 	h2

2 �
�76�

or, equivalently,

� =
��P�h2

�1 + 	h2��P�h2
− � + �� − 	h2��

. �77�

5. Phase diagrams

In Fig. 12 we have plotted a 3D phase diagram of the
ribosome traffic model, in the �−�− P�a

space, which
we obtained by following the MCH-based approach ex-
plained above. The corresponding 3D phase diagram in the
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FIG. 12. �Color online� A 3D phase diagram of our ribosome
traffic model. The LD and HD phases coexist on the surface I �red�.
Surfaces II �purple� and III �blue� separate the MC phase from the
HD and LD phases, respectively. Phase diagram is shown in �a� and
�b� from two different orientations. The parameters used are
�p=0.0028 s−1 , �a=25.0, k2=2.4 s−1 , �g=25.0 s−1
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�−�− P�h2
space is plotted in Fig. 13. The LD and HD

phases coexist on the surface I. A first-order phase transition
takes place across this surface. Surfaces II and III separate
the MC phase from the HD and LD phases, respectively. The
3D phase diagrams plotted in Figs. 12�a� and 13�a� are dif-
ferently oriented in Figs. 12�b� and 13�b�, respectively, to
show the regions hidden in Fig. 12�a� and 13�a� behind the
surfaces I–III.

By drawing flat surfaces parallel to the �−� plane, each
corresponding to a fixed value of P�a

�in �a�� or P�h2
�in �b��,

we have obtained the curves of intersection of this flat plane
with surfaces I–III. By projecting these curves on the plane
P�h2

=0, we also obtained the 2D phase diagram of the sys-
tem in the �−� plane for several different values of P�h2

.

This phase diagram helps in comparing and contrasting our
results for the ribosome traffic model with the 2D phase dia-
gram of the TASEP in the P�h2

plane �Fig. 14�. The most
interesting feature is that, unlike TASEP, the lines on which
HD and LD phases coexist are curved. This characteristic
seems to be the general feature of such phases diagrams,
rather than an exception; similar curved lines of coexistence
between HD and LD phases have been observed also in some
other contexts �58�.

6. Average density profiles

The bulk density of the system is governed by the follow-
ing equations:

� =�
�− if � �

��P�h2

�1 + 	h2��P�h2
− � + �� − 	h2�� and � �

P�h2
��

�1 + 	h2��1 − ���� − 1��
⇒ LD

�+ if � �
P�h2

�1 − ����

�1 + 	h2��1 − ���� − 1��
and � �

P�h2
��1 + 	h2�

P�h2
� + ��1 − � + 2	h2 − �	h2 + 	h2

2 �
⇒ HD

�� if � �
P�h2

�1 − ����

�1 + 	h2��1 − ���� − 1��
and � �

P�h2
��

�1 + 	h2��1 − ���� − 1��
⇒ MC.

� �78�

IX. SUMMARY AND CONCLUSION

In this paper, we have derived the exact analytical expres-
sion for the distribution of the dwell times of ribosomes
at each codon on the mRNA track. For this purpose, we
have used a model that captures the essential steps in the
mechanochemical cycle of a ribosome. As more details of
this cycle get unveiled by new experiments, our model can
be extended to capture those new features and the dwell time
distribution can be recalculated accordingly. Moreover, some
of the transitions in the mechanochemical cycle used in our
model may require reinterpretation to reconcile with new ob-
servations. Nevertheless, at this stage, the dwell time distri-
bution predicted by our theory agrees qualitatively with the
corresponding distribution observed in vitro single-ribosome
experiments. Moreover, our prediction can be tested quanti-
tatively by repeating the single-ribosome experiments vary-
ing the supply of amino-acid monomers and GTP molecules.

From the full distribution, we have also calculated the
mean-dwell time which satisfies a Michaelis-Menten-like
equation. We have pointed out the formal similarities be-
tween the cycles, and the corresponding equations, for a
single enzyme molecule and a single ribosome, which are
responsible for the Michalis-Menten-like form of the mean-
dwell time. The inverse of the mean-dwell time is also the
average velocity of the ribosome. The expression of this av-
erage velocity obtained from the dwell time distribution is

identical to that obtained by an alternative approach pio-
neered by Fisher and Kolomeisky in the context of generic
models of molecular motors. Finally, following standard pro-
cedure, we capture the effects of load force by modifying the
rate constant �h2 and predict the force-velocity relation and
its dependence on experimentally controllable parameters.
From this relation, we have estimated the stall force of a
ribosome. Our theoretical estimate is consistent with the ex-
perimentally measured value reported in the literature. How-
ever, to our knowledge, the full force-velocity relation for
ribosomes has not been measured so far. But, with the rapid
progress in the experimental techniques, it should be possible
in near future to test the full force-velocity relation predicted
by our theory.

We have presented a few quantitative characteristics of
the fluctuations in the kinetics of ribosomes. We have defined
a “randomness parameter” r, which is a measure of the fluc-
tuations in the dwell times. From the full probability density
of the dwell times, we have derived the expression for r and
analyzed some of its interesting features. We have also re-
ported the analytical expression for the diffusion constant
and related it to the mean velocity and the randomness pa-
rameter. Using the central limit theorem, we have argued that
the distribution of the run times of the ribosomes from the
start codon to the stop codon is Gaussian and also pointed
out the relations between its first two moments and those of
the dwell time distribution.

To our knowledge, the run time distribution of ribosomes
has not been measured so far. RNA polymerase �RNAP�
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motor runs on a DNA track using the track to polymerize the
complementary RNA. There are some similarities between
template-dictated polymerizations driven by ribosome and
RNAP. The run time distribution of RNAP has been mea-
sured and found to be Gaussian �59�. This is consistent with
the Gaussian run time distribution for ribosomes predicted in
this paper which follows from very general arguments based
on the central limit theorem.

Incorporating inter-ribosome steric interactions in the
model, we have developed a model for ribosome traffic. The
model may be regarded as a TASEP for hard rods each of
which has five distinct “internal states;” transitions between
these internal states constitute parts of the mechanochemical
cycle of a ribosome. Initiation and termination of the poly-
merization of individual proteins are captured by imposing
open boundary conditions. For this model, we have drawn
three-dimensional phase diagrams in spaces spanned by pa-
rameters which can be varied in a controlled manner in labo-
ratory experiments in vitro. In principle, the phase diagram
can be obtained by analyzing the density profile of the ribo-
somes in electron micrographs of the system for several dif-
ferent concentrations of amino-acid subunits, GTP concen-
tration, etc.
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APPENDIX

The solution of the Eqs. �1� and �6� for the initial condition �10� is given by

P1�t� = exp�− �at� + �a�p� exp�− �1t�
��a − �1���2 − �1�

+
exp�− �2t�

��a − �2���1 − �2�
+

exp�− �at�
��1 − �a���2 − �a�	 , �A1�

P2�t� = �a� exp�− �1t�
��2 − �1�

+
exp�− �2t�
��1 − �2� 	 , �A2�

P3�t� = �a�h1� exp�− �1t�
��2 − �1��k2 − �1�

+
exp�− �2t�

��1 − �2��k2 − �2�
+

exp�− k2t�
��1 − k2���2 − k2�	 , �A3�

P4�t� = �a�h1k2� exp�− �1t�
��2 − �1��k2 − �1���g − �1�

+
exp�− �2t�

��1 − �2��k2 − �2���g − �2�

+
exp�− k2t�

��1 − k2���2 − k2���g − k2�
+

exp�− �gt�
��1 − �g���2 − �g��k2 − �g�	 , �A4�

P5�t� = �a�h1k2�g� exp�− �1t�
��2 − �1��k2 − �1���g − �1���h2 − �1�

+
exp�− �2t�

��1 − �2��k2 − �2���g − �2���h2 − �2�

+
exp�− k2t�

��1 − k2���2 − k2���g − k2���h2 − k2�
+

exp�− �gt�
��1 − �g���2 − �g��k2 − �g���h2 − �g�

+
exp�− �h2t�

��1 − �h2���2 − �h2��k2 − �h2���g − �h2�	 . �A5�

These distributions are plotted in Fig. 15 for one set of values of the model parameters. These clearly shows that the probability
P1�t� decreases monotonically from the initial value 1 while the states 2–5 “rise” and “fall” in a sequence.
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